Evaluating the role of NRF-1 in the regulation of the goldfish COX4-1 gene in response to temperature.

نویسندگان

  • Ge Gao
  • Christopher D Moyes
چکیده

Cold acclimation in fish typically increases muscle mitochondrial enzymes. In mammals, stressors that increase mitochondrial content are mediated though transcriptional regulators, including nuclear respiratory factor-1 (NRF-1). Focusing on the goldfish gene for cytochrome c oxidase (COX) subunit 4-1, we analysed the regulatory regions in various contexts to identify a mechanistic link between NRF-1 and cold-induced mitochondrial proliferation. Promoter analysis implicated two putative NRF-1 sites: one in the proximal promoter and a second in exon 1, which encodes the 5' untranslated region (5'-UTR). Transfection into mouse myoblasts showed that deletion of a region that included the proximal NRF-1 site reduced promoter activity by 30%; however, mutagenesis of the specific sequence had no effect. Thermal sensitivity analyses performed in rainbow trout gonadal fibroblasts (RTG-2) showed no effect of temperature (4 vs 19°C) on reporter gene expression. Likewise, reporters injected into muscle of thermally acclimated goldfish (4 vs 26°C) showed no elevation in expression. There was no difference in thermal responses of COX4-1 promoter reporters constructed from homologous regions of eurythermal goldfish and stenothermal zebrafish genes. NRF-1 chromatin immunoprecipitation of thermally acclimated goldfish muscle showed no temperature effect on NRF-1 binding to either the proximal promoter or 5'-UTR. It remains possible that the cold-induced upregulation of COX4-1 expression is a result of NRF-1 binding to distal regulatory regions or through indirect effects on other transcription factors. However, the proximal promoter does not appear to play a role in mediating the thermal response of the COX4-1 gene in fish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRANSLATIONAL PHYSIOLOGY Transcriptional regulation of temperature-induced remodeling of muscle bioenergetics in goldfish

Bremer K, Monk CT, Gurd BJ, Moyes CD. Transcriptional regulation of temperature-induced remodeling of muscle bioenergetics in goldfish. Am J Physiol Regul Integr Comp Physiol 303: R150 –R158, 2012. First published May 23, 2012; doi:10.1152/ajpregu.00603.2011.—Central to mammalian mitochondrial biogenesis is the transcriptional master regulator peroxisome proliferator-activated receptor (PPAR)co...

متن کامل

Transcriptional regulation of temperature-induced remodeling of muscle bioenergetics in goldfish.

Central to mammalian mitochondrial biogenesis is the transcriptional master regulator peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), and a network of DNA-binding proteins it coactivates. We explored the role of this pathway in muscle mitochondrial biogenesis in response to thermal acclimation in goldfish (Carassius auratus). We investigated the transcriptional resp...

متن کامل

Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature.

In mammals, the peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 (PGC-1) family members and their binding partners orchestrate remodelling in response to diverse challenges such as diet, temperature and exercise. In this study, we exposed goldfish to three temperatures (4, 20 and 35 degrees C) and to three dietary regimes (food deprivation, low fat and high fat) and examine...

متن کامل

Pattern of DNA cytosine methylation in Aeluropus littoralis during temperature stress

DNA methylation as an epigenetic mediator plays the important role in spatial and temporal gene regulation and ensures the stability and the plasticity of organism. In this investigation, methylation sensitive amplification polymorphism (MSAP) were assessed in CCGG sites on a halophytic plant, Aeluropuslittoralis in response to different temperature stresses including freezing...

متن کامل

Evolution of the oxygen sensitivity of cytochrome c oxidase subunit 4.

Vertebrates possess two paralogs of cytochrome c oxidase (COX) subunit 4: a ubiquitous COX4-1 and a hypoxia-linked COX4-2. Mammalian COX4-2 is thought to have a role in relation to fine-tuning metabolism in low oxygen levels, conferred through both structural differences in the subunit protein structure and regulatory differences in the gene. We sought to elucidate the pervasiveness of this fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 219 Pt 19  شماره 

صفحات  -

تاریخ انتشار 2016